Hole Pinning Clearance
نویسنده
چکیده
Two parts, each with two holes, are to be pinned together by some type of fastener. Nominally the holes on part 1 are to match the holes on part 2 and the fastener diameters should be smaller than the hole diameters. Due to variation in hole diameters, fastener diameters and hole center positions loose pinning of the two parts may no longer be possible. The problem considered here is to define a pinning criterion which, when nonpositive, expresses by how much we may have missed loose pinning, and which, when positive indicates the amount of slack left over after pinning. The problem is first reduced to a one-dimensional one by aligning the parts on the axes connecting the actual hole centers on each part. The proposed citerion is the maximum of the minimum plays at the two matched hole pairs. By play is meant the difference between the diameter of the biggest circle fitting inside an (overlapping) hole pair and the corresponding fastener diameter. The criterion is definitely nonlinear and traditional RSS methodology is inappropriate here. Worst case and statistical tolerancing are examined under the special scenario that a) the nominal hole diameters are the same with diameter variations governed by a common uniform distribution, b) the nominal fastener diameters are the same with diameter variations governed by a common uniform distribution, and c) the nominal hole centers are matched for the two parts with variation governed by a common circular symmetric, bivariate normal distribution. The hole diameters on the same part are modeled to be identical. An example calculation shows that under worst case tolerancing the required nominal hole clearance is over 100% larger than under statistical tolerancing. Further, the effect of deviations from perpendicularity of the hole center axes is examined. Depending on the part thickness such deviations will reduce the effective diameter of the hole. This effective diameter is the largest diameter of a cylinder that will pass through the hole in perpendicular fashion. Deviations from perpendicularity are again modeled by a circular symmetric, bivariate normal distribution for the location (X,Y ) of the hole center exit location projected onto the entry plane. Again an example calculation is given. Tables are provided for easy use of the statistical tolerancing methods. ∗P.O. Box 3707, MS 7L-22, Seattle WA 98124-2207, e-mail: [email protected] Hole Pinning Clearance 1 Problem Description The diagram in Figure 1 shows two parts to be pinned by two bolts, rivets, or expanding temporary fasteners, referred to as pins from now on. At issue is whether the variations in the hole diameters D1, . . . , D4, hole center locations, and minimum fastener diameters d1, d2 allow successful loose pinning of the two parts. The distance from hole center 1 to hole center 2 is denoted by X1 and the distance from hole center 3 to hole center 4 is denoted by X2. Here the holes are referenced by the same indices as the corresponding hole diameters. Furthermore, it is assumed that the axis connecting hole centers 1 and 2 is aligned with the axis connecting hole centers 3 and 4. Such alignment will give the best opportunity for pinning and thus reduces the problem to a one-dimensional one along that alignment axis. All motions of part 2, referred to below, will be along this axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✲ ✛ ∆2 ✲ X1 ✲ X2 ✲ ✛ D3 ✲ ✛ D1 ✲ ✛ D2 ✲ ✛ D4 ✲ ✛ ✲ ✛ d1 d2 part 1
منابع مشابه
Breaking Through the Multi-Mesa-Channel Width Limited of Normally Off GaN HEMTs Through Modulation of the Via-Hole-Length
We present new normally off GaN high-electron-mobility transistors (HEMTs) that overcome the typical limitations in multi-mesa-channel (MMC) width through modulation of the via-hole-length to regulate the charge neutrality screen effect. We have prepared enhancement-mode (E-mode) GaN HEMTs having widths of up to 300 nm, based on an enhanced surface pinning effect. E-mode GaN HEMTs having MMC st...
متن کاملPinning magnetic domain via patterning artificial lattice under amorphous magnetic layer
A novel method for pinning magnetic domains on pre-formatted pinning sites has been developed for perpendicular magnetic anisotropy magneto-optical (MO) thin film media. The pinning sites were artificial lattices made by patterning a layer of gold grid on the substrate using electron beam lithography. Compared with the work proposed using photolithography, our method showed the ability of makin...
متن کاملPinning-mode resonance of a Skyrme crystal near Landau-level filling factor ν=1.
Microwave pinning-mode resonances found around integer quantum Hall effects, are a signature of crystallized quasiparticles or holes. Application of in-plane magnetic field to these crystals, increasing the Zeeman energy, has negligible effect on the resonances just below Landau-level filling ν=2, but increases the pinning frequencies near ν=1, particularly for smaller quasiparticle or hole den...
متن کاملExperimental Investigation and Numerical Prediction of Fatigue Life in Force Fitted Fastener Holes
In this paper, the effect of interference fit on fatigue life of holed plate of mechanical joints was investigated experimentally. Fatigue tests were carried out on the holed specimens of Al-alloy 7075-T6 alloy. The interference fit process consists of force fitting a fastener into the hole with a negative clearance (diameter of the fastener is larger than of the hole) that produces beneficial ...
متن کاملPinning modes and interlayer correlation in high-magnetic-field bilayer Wigner solids.
We report studies of pinning mode resonances in the low total Landau filling (nu) Wigner solid of a series of bilayer hole samples with negligible interlayer tunneling and with varying interlayer separation d. Comparison of states with equal layer densities (p,p) to single layer states (p,0) produced in situ by biasing, indicates that there is interlayer quantum correlation in the solid at smal...
متن کامل